Science
Ex-Greater China
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Ex-Greater China
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Ex-Greater China
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Greater China
Commerical Rights
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Greater China
Commerical Rights
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Ex-Greater China
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Global
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Shared
ABSK091 is designed to be an oral, small molecule, potent and selective inhibitor of the protein tyrosine phosphatase SHP2 that binds and stabilizes SHP2 in its inactive conformation.
SHP2 promotes cancer cell survival and growth through the RAS pathway by transducing signals downstream from receptor tyrosine kinases (RTKs). As a critical signaling node and regulator, SHP2 drives cancer cell proliferation and plays a key role in the way cancer cells develop resistance to targeted therapies.
We believe that inhibition of SHP2 could be effective as a monotherapy in cancers with specific alterations and could block a common path that cancer cells exploit to avoid killing by other antitumor agents, thus overcoming or delaying the onset of resistance to those therapies.
We are currently evaluating the safety and tolerability of ABSK091 in a Phase 1 dose escalation study in patients with advanced or metastatic solid tumors.
Copyright © 2021 All rights reserved:Abbisko Therapeautics 沪ICP备17056565号-1 沪公网安备31011502401700 PRIVACY POLICY